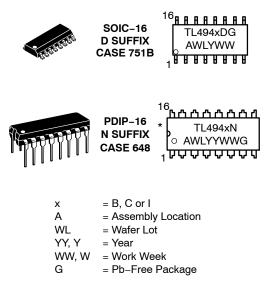
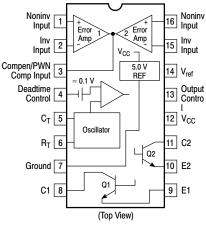
MARKING DIAGRAMS


Switch mode Pulse Width Modulation Control Circuit

TL494, NCV494

The TL494 is a fixed frequency, pulse width modulation control circuit designed primarily for switch mode power supply control.


Features

- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator with Master or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5.0 V Reference
- Adjustable Deadtime Control
- Uncommitted Output Transistors Rated to 500 mA Source or Sink
- Output Control for Push-Pull or Single-Ended Operation
- Undervoltage Lockout
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- Pb-Free Packages are Available*

*This marking diagram also applies to NCV494.

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	42	V
Collector Output Voltage	V _{C1} , V _{C2}	42	V
Collector Output Current (Each transistor) (Note 1)	I _{C1} , I _{C2}	500	mA
Amplifier Input Voltage Range	V _{IR}	-0.3 to +42	V
Power Dissipation @ $T_A \le 45^{\circ}C$	PD	1000	mW
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	80	°C/W
Operating Junction Temperature	TJ	125	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C
Operating Ambient Temperature Range TL494B TL494C TL494I NCV494B	T _A	-40 to +125 0 to +70 -40 to +85 -40 to +125	°C
Derating Ambient Temperature	T _A	45	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Maximum thermal limits must be observed.

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	V _{CC}	7.0	15	40	V
Collector Output Voltage	V_{C1}, V_{C2}	-	30	40	V
Collector Output Current (Each transistor)	I _{C1} , I _{C2}	-	-	200	mA
Amplified Input Voltage	V _{in}	-0.3	-	V _{CC} – 2.0	V
Current Into Feedback Terminal	I _{fb}	-	-	0.3	mA
Reference Output Current	I _{ref}	-	-	10	mA
Timing Resistor	R _T	1.8	30	500	kΩ
Timing Capacitor	C _T	0.0047	0.001	10	μF
Oscillator Frequency	f _{osc}	1.0	40	200	kHz

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, C_T = 0.01 μ F, R_T = 12 k Ω , unless otherwise noted.)

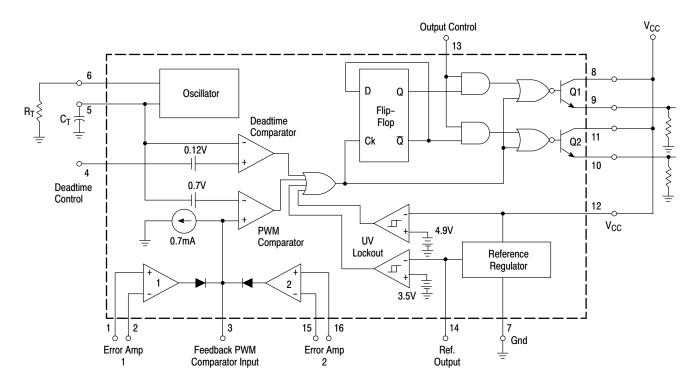
For typical values $T_A = 25^{\circ}C$, for min/max values T_A is the operating ambient temperature range that applies, unless otherwise noted.

Characteristics	Symbol	Min	Тур	Max	Unit
REFERENCE SECTION					
Reference Voltage (I _O = 1.0 mA)	V _{ref}	4.75	5.0	5.25	V
Line Regulation (V _{CC} = 7.0 V to 40 V)	Reg _{line}	-	2.0	25	mV
Load Regulation (I _O = 1.0 mA to 10 mA)	Reg _{load}	-	3.0	15	mV
Short Circuit Output Current (V _{ref} = 0 V)	I _{SC}	15	35	75	mA
OUTPUT SECTION					
Collector Off-State Current (V _{CC} = 40 V, V _{CE} = 40 V)	I _{C(off)}	-	2.0	100	μΑ
Emitter Off–State Current V_{CC} = 40 V, V_{C} = 40 V, V_{E} = 0 V)	I _{E(off)}	-	-	-100	μΑ
Collector-Emitter Saturation Voltage (Note 2) Common-Emitter (V _E = 0 V, I _C = 200 mA) Emitter-Follower (V _C = 15 V, I _E = -200 mA)	V _{sat(C)} V _{sat(E)}		1.1 1.5	1.3 2.5	V
$\begin{array}{l} \mbox{Output Control Pin Current} \\ \mbox{Low State } (V_{OC} \leq 0.4 \mbox{ V}) \\ \mbox{High State } (V_{OC} = V_{ref}) \end{array}$	l _{ocl} loch		10 0.2	_ 3.5	μA mA
Output Voltage Rise Time Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13)	tr		100 100	200 200	ns
Output Voltage Fall Time Common–Emitter (See Figure 12) Emitter–Follower (See Figure 13)	t _f	-	25 40	100 100	ns

2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, C_T = 0.01 μ F, R_T = 12 k Ω , unless otherwise noted.) For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies, unless otherwise noted.

Characteristics	Symbol	Min	Тур	Max	Unit
ERROR AMPLIFIER SECTION					
Input Offset Voltage (V _{O (Pin 3)} = 2.5 V)	V _{IO}	-	2.0	10	mV
Input Offset Current (V _{O (Pin 3)} = 2.5 V)	I _{IO}	-	5.0	250	nA
Input Bias Current (V _{O (Pin 3)} = 2.5 V)	I _{IB}	_	-0.1	-1.0	μΑ
Input Common Mode Voltage Range (V _{CC} = 40 V, T _A = 25°C)	V _{ICR}	_1	0.3 to V _{CC} -2	2.0	V
Open Loop Voltage Gain (ΔV_{O} = 3.0 V, V_{O} = 0.5 V to 3.5 V, R_{L} = 2.0 k $\Omega)$	A _{VOL}	70	95	-	dB
Unity–Gain Crossover Frequency (V_O = 0.5 V to 3.5 V, R_L = 2.0 k\Omega)	f _{C-}	-	350	-	kHz
Phase Margin at Unity–Gain (V_O = 0.5 V to 3.5 V, R_L = 2.0 k\Omega)	φm	-	65	-	deg.
Common Mode Rejection Ratio (V _{CC} = 40 V)	CMRR	65	90	-	dB
Power Supply Rejection Ratio (ΔV_{CC} = 33 V, V _O = 2.5 V, R _L = 2.0 k Ω)	PSRR	_	100	-	dB
Output Sink Current (V _{O (Pin 3)} = 0.7 V)	I _{O-}	0.3	0.7	-	mA
Output Source Current (V _{O (Pin 3)} = 3.5 V)	I _O +	2.0	-4.0	-	mA
PWM COMPARATOR SECTION (Test Circuit Figure 11)					
Input Threshold Voltage (Zero Duty Cycle)	V _{TH}	_	2.5	4.5	V
Input Sink Current (V _(Pin 3) = 0.7 V)	II-	0.3	0.7	-	mA
DEADTIME CONTROL SECTION (Test Circuit Figure 11)					
Input Bias Current (Pin 4) (V _{Pin 4} = 0 V to 5.25 V)	I _{IB (DT)}	-	-2.0	-10	μA
Maximum Duty Cycle, Each Output, Push–Pull Mode (V _{Pin 4} = 0 V, C _T = 0.01 μF, R _T = 12 kΩ) (V _{Pin 4} = 0 V, C _T = 0.001 μF, R _T = 30 kΩ)	DC _{max}	45 -	48 45	50 50	%
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle)	V _{th}	_ 0	2.8 -	3.3 -	V
OSCILLATOR SECTION					
Frequency (C _T = 0.001 μ F, R _T = 30 k Ω)	f _{osc}	-	40	-	kHz
Standard Deviation of Frequency* (C_T = 0.001 $\mu\text{F},\text{R}_{\text{T}}$ = 30 kΩ)	of _{osc}	_	3.0	-	%
Frequency Change with Voltage (V _{CC} = 7.0 V to 40 V, T_A = 25°C)	$\Delta f_{osc} (\Delta V)$	_	0.1	-	%
Frequency Change with Temperature (ΔT_A = T _{low} to T _{high}) (C _T = 0.01 µF, R _T = 12 kΩ)	$\Delta f_{osc} (\Delta T)$	-	-	12	%
UNDERVOLTAGE LOCKOUT SECTION					
Turn–On Threshold (V _{CC} increasing, $I_{ref} = 1.0 \text{ mA}$)	V _{th}	5.5	6.43	7.0	V
TOTAL DEVICE					
Standby Supply Current (Pin 6 at V _{ref} , All other inputs and outputs open) $(V_{CC} = 15 \text{ V})$ $(V_{CC} = 40 \text{ V})$	Icc	-	5.5 7.0	10 15	mA
Average Supply Current (C _T = 0.01 μ F, R _T = 12 kΩ, V _(Pin 4) = 2.0 V) (V _{CC} = 15 V) (See Figure 12)		_	7.0	-	mA


* Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, $\sigma = \sqrt{\frac{N}{\sum (X_n - \overline{X})^2}} \sqrt{\frac{n = 1}{N - 1}}$

ORDERING INFORMATION

Device	Package	Shipping [†]
TL494BD	SOIC-16	48 Units / Rail
TL494BDG	SOIC-16 (Pb-Free)	48 Units / Rail
TL494BDR2	SOIC-16	2500 Tape & Reel
TL494BDR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
TL494CD	SOIC-16	48 Units / Rail
TL494CDG	SOIC-16 (Pb-Free)	48 Units / Rail
TL494CDR2	SOIC-16	2500 Tape & Reel
TL494CDR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
TL494CN	PDIP-16	25 Units / Rail
TL494CNG	PDIP-16 (Pb-Free)	25 Units / Rail
TL494IN	PDIP-16	25 Units / Rail
TL494ING	PDIP-16 (Pb-Free)	25 Units / Rail
NCV494BDR2*	SOIC-16	2500 Tape & Reel
NCV494BDR2G*	SOIC-16 (Pb-Free)	2500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV494: $T_{low} = -40^{\circ}C$, $T_{high} = +125^{\circ}C$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change superior of the second second

control.

This device contains 46 active transistors.

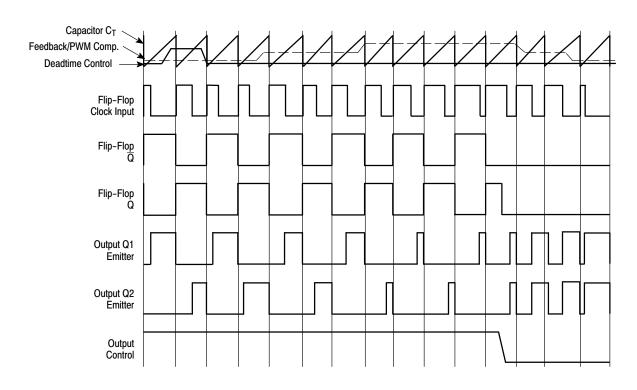


Figure 2. Timing Diagram

APPLICATIONS INFORMATION

Description

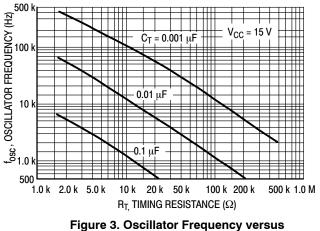
The TL494 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency- programmable by two external components, R_T and C_T . The approximate oscillator frequency is determined by:

$$f_{osc} \approx \frac{1.1}{R_T \bullet C_T}$$

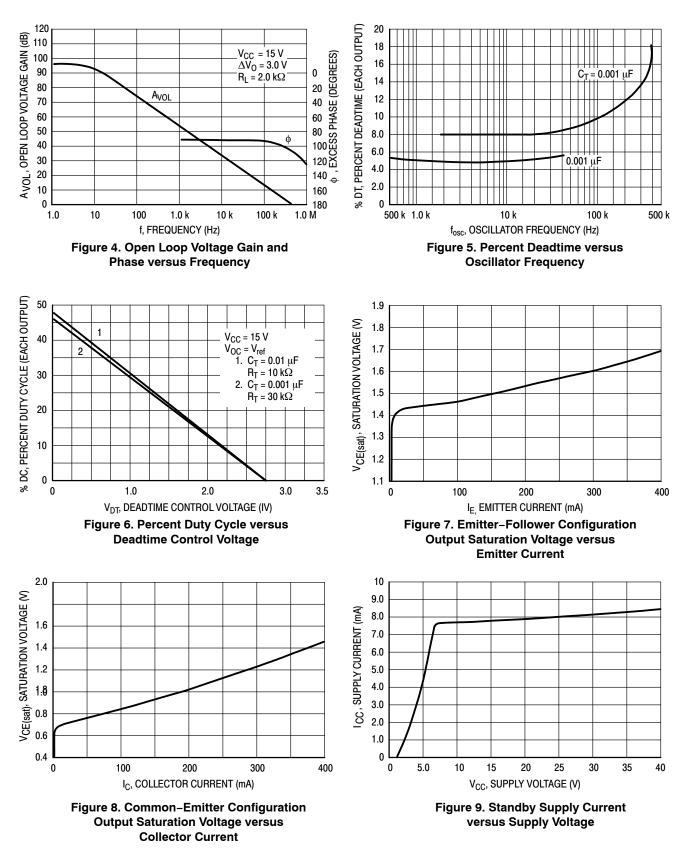
For more information refer to Figure 3.

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C_T to either of two control signals. The NOR gates, which drive output transistors Q1 and Q2, are enabled only when the flip–flop clock–input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control–signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the Timing Diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the deadtime control, the error amplifier inputs, or the feedback input. The deadtime control comparator has an effective 120 mV input offset which limits the minimum output deadtime to approximately the first 4% of the sawtooth–cycle time. This would result in a maximum duty cycle on a given output of 96% with the output control grounded, and 48% with it connected to the reference line. Additional deadtime may be imposed on the output by setting the deadtime–control input to a fixed voltage, ranging between 0 V to 3.3 V.


Fun	ctior	nal T	able

Input/Output Controls	Output Function	$\frac{f_{out}}{f_{osc}} =$
Grounded	Single-ended PWM @ Q1 and Q2	1.0
@ V _{ref}	Push-pull Operation	0.5


The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on–time, established by the deadtime control input, down to zero, as the voltage at the feedback pin varies from 0.5 V to 3.5 V. Both error amplifiers have a common mode input range from -0.3 V to (V_{CC} -2V), and may be used to sense power–supply output voltage and current. The error–amplifier outputs are active high and are ORed together at the noninverting input of the pulse–width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor C_T is discharged, a positive pulse is generated on the output of the deadtime comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flip-flop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on-time of less than 50% is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator.

The TL494 has an internal 5.0 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of $\pm 5.0\%$ with a typical thermal drift of less than 50 mV over an operating temperature range of 0° to 70°C.

Timing Resistance

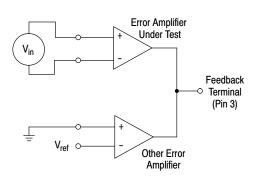


Figure 10. Error-Amplifier Characteristics

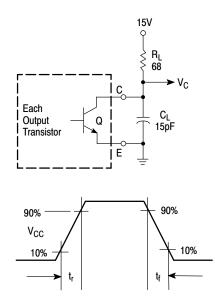


Figure 12. Common–Emitter Configuration Test Circuit and Waveform

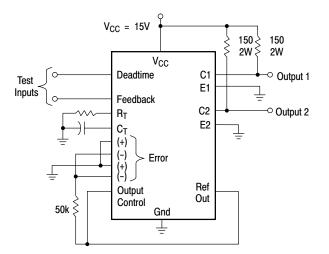


Figure 11. Deadtime and Feedback Control Circuit

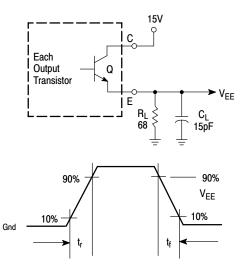
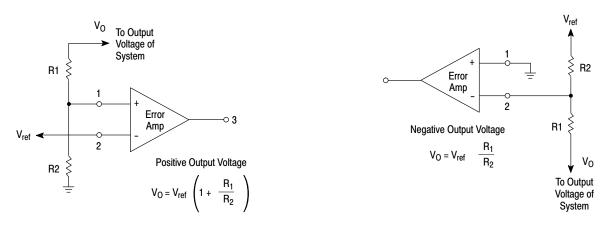
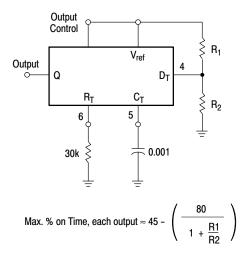
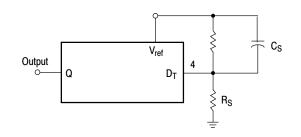
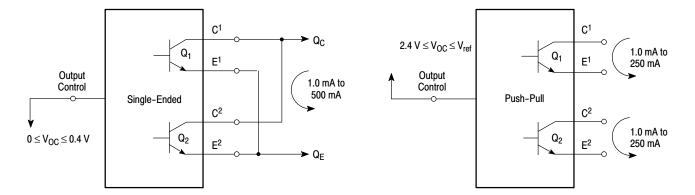
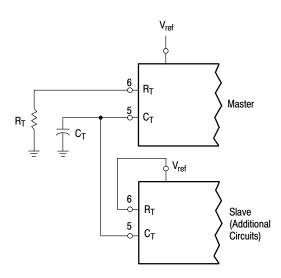
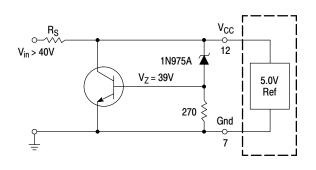
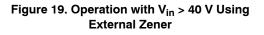
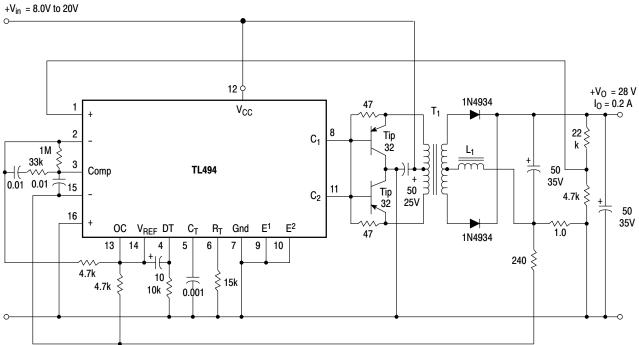




Figure 13. Emitter–Follower Configuration Test Circuit and Waveform

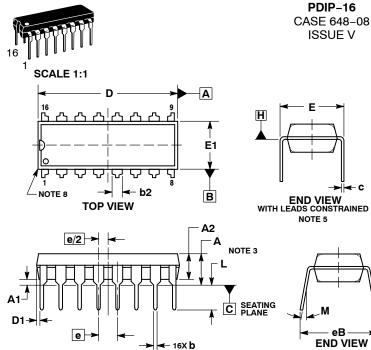

Figure 16. Soft-Start Circuit





All capacitors in µF

Test	Conditions	Results
Line Regulation	V _{in} = 10 V to 40 V	14 mV 0.28%
Load Regulation	V_{in} = 28 V, I_O = 1.0 mA to 1.0 A	3.0 mV 0.06%
Output Ripple	V _{in} = 28 V, I _O = 1.0 A	65 mV pp P.A.R.D.
Short Circuit Current	V_{in} = 28 V, R_L = 0.1 Ω	1.6 A
Efficiency	V _{in} = 28 V, I _O = 1.0 A	71%


L1 - 3.5 mH @ 0.3 A

T1 - Primary: 20T C.T. #28 AWG Secondary: 120T C.T. #36 AWG Core: Ferroxcube 1408P-L00-3CB

Figure 21. Pulse Width Modulated Step-Down Converter

Test	Conditions	Results	
Line Regulation	V _{in} = 8.0 V to 40 V	3.0 mV 0.01%	
Load Regulation	V_{in} = 12.6 V, I_O = 0.2 mA to 200 mA	5.0 mV 0.02%	
Output Ripple	V _{in} = 12.6 V, I _O = 200 mA	40 mV pp P.A.R.D.	
Short Circuit Current	V_{in} = 12.6 V, R_L = 0.1 Ω	250 mA	
Efficiency	V _{in} = 12.6 V, I _O = 200 mA	72%	

🕀 0.010 🕅 C A 🕅 B 🕅

STYLE 1: STYLE 2: PIN 1. COMMON DRAIN CATHODE CATHODE PIN 1. 2. 2. з. CATHODE 3. COMMON DRAIN COMMON DRAIN 4. CATHODE 4. 5. CATHODE 5. 6. CATHODE 6. COMMON DRAIN 7. CATHODE 7. COMMON DRAIN CATHODE COMMON DRAIN 8. 9. 8. 9. ANODE GATE 10. ANODE 10. SOURCE ANODE ANODE 11. 12. GATE SOURCE 11. 12. 13. ANODE 13. GATE 14. 15. ANODE ANODE 14. 15. SOURCE GATE 16. ANODE 16. SOURCE

SIDE VIEW

NOTE 6

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2
- 3.
- DIMENSIONING AND TOLERANGURA PER ASIME 114.300, 1994. CONTROLLING DIMENSION: INCHES. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. 4.
- DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR 5. TO DATUM C.
- DIMENSION 6B IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE 6.
- 7
- LEADS, WHERE THE LEADS EXIT THE BODY. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE 8 CORNERS).

	INCHES MILLIMETERS				
DIM	MIN	MAX	MIN	MAX	
	IVITIN		IVITIN		
Α		0.210		5.33	
A1	0.015		0.38		
A2	0.115	0.195	2.92	4.95	
b	0.014	0.022	0.35	0.56	
b2	0.060) TYP	1.52	TYP	
С	0.008	0.014	0.20	0.36	
D	0.735	0.775	18.67	19.69	
D1	0.005		0.13		
Е	0.300	0.325	7.62	8.26	
E1	0.240	0.280	6.10	7.11	
е	0.100	BSC	2.54	BSC	
eВ		0.430		10.92	
L	0.115	0.150	2.92	3.81	
Μ		10°		10°	

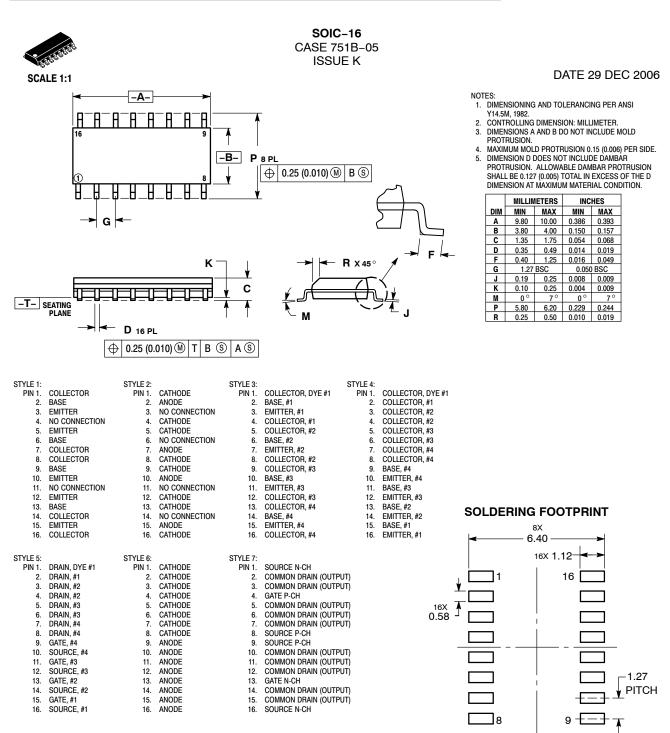
GENERIC **MARKING DIAGRAM***

¹⁶ <u> </u>
XXXXXXXXXXXXX
• xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
O AWLYYWWG
᠋ᡝᢧᠣᠣᠣᠣᠥᠥᡨ

XXXXX = Specific Device Code

- = Assembly Location
- WL = Wafer Lot

А


- YY = Year
- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " .", may or may not be present.

DOCUMENT NUMBER:	98ASB42431B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP-16		PAGE 1 OF 1		
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-16		PAGE 1 OF 1
ON Semiconductor and wate trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding			

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative